Physical Activity Guidelines for Americans. However, significant evidence regarding the duration and timing of sleep as determinants of health remain largely unrecognized by federal agencies, policy makers, scientists, and the public. The American Academy of Sleep Medicine and the Sleep Research Society have developed this document to communicate to national health stakeholders the current knowledge which ties sufficient sleep and circadian alignment in adults to health.

Sleep is Exquisitely Organized and Controlled

Night after night sleep is remarkably consistent in its organization. Each night is comprised of recurring, complex, active, and highly organized physiologic processes, which when disordered or deficient results in ill-health or death. Approximately 1 in 3 adult Americans are sleeping less than 7 hours per night (37.1%), an amount at which physiological and neurobehavioral deficits manifest and become progressively worse under chronic conditions. Sleep deprivation contributes to a number of molecular, immune, and neural changes that play a role in disease development, independent of primary sleep disorders. These changes in biological processes in response to chronic sleep deficiency may serve as etiologic factors for the development and exacerbation of cardiovascular and metabolic diseases and, ultimately, a shortened lifespan. Sleep deprivation also results in significant impairments in cognitive and motor performance which increase the risk of motor vehicle crashes and work-related injuries and fatal accidents.

Citation: Luyster FS; Strollo PJ; Zee PC; Walsh JK. Sleep: a health imperative. SLEEP 2012;35(6):727-734.
of two distinct physiologic states within the behavior of sleep seems extraordinarily unlikely unless critical biological needs are met by each state.

A fundamental homeostatic process is involved in the regulation of sleep. The strength of this process is dependent upon the amount of time elapsed since the last sleep period. The homeostatic pressure to sleep increases as a person stays awake. The longer one stays awake, the stronger the homeostatic drive to sleep becomes. Individuals with sleep deficiency due to short sleep duration accumulate a sleep debt and will exhibit an increased drive to recover the lost sleep leading to shorter sleep latency, greater total sleep time, and enhancement of EEG synchrony in NREM sleep. During periods of prolonged sleep deprivation, the brain will overwhelm attempts to maintain wakefulness, and sleep will inevitably occur. Even when an individual is active and resisting sleep, if sleep debt is substantial, transitions into brief periods of sleep will occur. These “microsleeps” generally last from 3 to 30 seconds and occur without awareness of the individual, despite clear changes to a sleeping pattern in the EEG. This homeostatic pressure for sleep which can result in the occurrence of sleep even when life is at risk (e.g., when driving), supporting the fact that sleep is indispensable.

In addition to the homeostatic sleep drive, a second process is involved in the control of the timing and organization of sleep. Referred to as the circadian (i.e., “about a day”) process, the timing of sleep is heavily influenced by a circadian timing mechanism located in the suprachiasmatic nucleus in the brain. The circadian timing system incorporates 3 different components: (1) input pathways that transmit light and other signals to the circadian “clock” and thus entrain circadian rhythms to environmental cues, primarily the light-dark cycle; (2) an endogenous circadian pacemaker that generates rhythms having a period of approximately 24 hours; and (3) output pathways controlled by the pacemaker. In the absence of environmental cues, circadian rhythms are intrinsic and will continue to oscillate with a period of approximately 24 hours. A temporally precise interaction exists between the sleep homeostatic process and the circadian timing of output from wake-promoting centers in the brain. The gradual build-up of sleep debt across the day is opposed by incrementally increasing brain alerting signals, which rather abruptly dissipate around the usual time of sleep onset at night and “permits” sleep to occur. Without the opposition of the alerting system, humans would be unable to sustain wakefulness for the usual 16 hours each day because of the growing homeostatic sleep pressure. Without the prompt dissipipation of alerting activity, sleep at night would be difficult to achieve and sustain. The evolution of two temporally and precisely complimentary processes which maximize daily sustained periods of both wakefulness and sleep lends credence to the essential biological need for sleep.

The circadian timing system is also responsible for the daily variations in many physiologic variables, such as core body temperature and the hormones melatonin and cortisol, and properly aligns those rhythms with sleep and with other physiologic processes. For example, core body temperature peaks in the late afternoon or evening hours, and reaches its nadir in the latter part of the night. The declining temperature before and during sleep promotes sleep onset and duration. In contrast, levels of melatonin, secreted by the pineal gland, are low during the daytime and rise during the night helping to promote sleep.
The stress hormone cortisol has peak levels in the late morning and reaches a nadir during the night.

Sleep and wake rhythms can be misaligned with daily variations in the physiologic variables noted above through jet lag or shift work. Such misalignment manifesting from altered lighting conditions can also affect circadian oscillations in a host of mammalian peripheral tissues, including the heart, lung, esophagus, and spleen. For example, even a single 6-hour phase-advance in the light-dark cycle, which would mimic travel from the US to Europe, desynchronizes circadian oscillations in peripheral tissues that, in turn, resynchronize at different rates. Over time, whole-body desynchronization may accelerate and lead to metabolic and cardiovascular disease, cancer progression, and death.

Sleep Occurs Throughout the Animal Kingdom

Sleep or sleep-like states are present in all species studied, although EEG correlates are not demonstrable in all species. Studies in insects, fish, amphibians, reptiles, turtles, and tortoises have shown sleep-like behavior. The overall constancy of sleep need across these species is a reflection of a ubiquitous biological need and evolutionary pressures that resulted in the development of the exquisite homeostatic and circadian inputs into consolidated sleep-wake periods in higher order species. Research investigating sleep in multiple species of land mammals clearly shows that these animals have the electrophysiological hallmarks of sleep, including both NREM and REM sleep. The EEG of birds show both NREM and REM sleep similar to sleep in mammals, except that the REM periods tend to be shorter than those in most mammals. Even sea mammals (dolphins, whales, fur seals) sleep, despite the need to swim nearly continuously, and EEG recordings demonstrate a capacity for unihemispheric sleep, allowing the organism to meet two biological requirements simultaneously.

Homeostatic processes are evident in all species studied as is circadian variation in the proportion of sleep and wakefulness. The preservation of most key characteristics of sleep (two states, circadian pattern, homeostasis, common behavioral indicators) throughout the animal kingdom indicates that the survival of the organism is enhanced by the regular occurrence of sleep.

Sleep is Encoded in Our Genes

Human sleep tendencies are heritable. Both twin and family studies suggest that usual sleep duration, excessive sleepiness, and diurnal preference (morning types or “larks” versus evening types or “owls”), are heritable, with heritability estimates (i.e., the proportion of a sleep characteristic that can be explained by genetic variation) ranging from 0.17-0.44, 0.29-0.48, and 0.22-0.47, respectively. Many sleep disorders run in families, and the genetic bases for some of these disorders have been established. Association tests conducted in a family-based sample identified an association between usual bedtime with a non-synonymous coding single-nucleotide polymorphism (SNP) in the NPSRI gene and an association of sleepiness with an SNP located in a non-coding portion of the PDE4D gene. Familial advance sleep phase syndrome is an inherited disorder characterized by early sleep times and early-morning awakening and was the first human circadian rhythm variant to be well characterized.

The PER3 gene is involved in sleep regulation. A polymorphism, based on 4-repeat or 5-repeat alleles, results in 3 PER3 genotypes: PER34/4, PER34/5, and PER35/5. The PER35/5 genotype is associated with morning circadian preference and higher homeostatic sleep drive in healthy individuals. The PER34/4 genotype is associated with the delayed phase syndrome (i.e., evening circadian preference and lower homeostatic sleep drive). One manifestation of the delayed phase syndrome is lowered homeostatic sleep drive resulting in prolonged sleep latency (i.e., difficulty falling asleep).

A number of genes are essential for the generation of circadian rhythms in mammals; because of the interaction of circadian processes and sleep, it is not surprising that some clock genes (i.e., genes that affect both the persistence and period of circadian rhythms) appear to have effects on sleep, as well. For example, a mutation in the hDEC2 gene was identified in 2 individuals who had lifelong daily sleep times that were shorter (average 6.25 h) than most normal sleepers (average 8.06 h), and genetically engineered mice carrying this mutation had an increased amount of wakefulness and shortened sleep time. Thus, a biological basis for reduced sleep time may be caused by the DEC2 gene mutation. It is important to recognize, however, that reduced amounts of sleep do not necessarily mean less sleep is required for good health.

Sleep is Essential for Survival

The ultimate outcome of prolonged sleep deprivation in animals is death. Rats deprived of sleep die within 2 to 3 weeks. Early studies also document the fatal outcome of prolonged sleep deprivation in dogs. Murine models (e.g., mice and rats) have also demonstrated the detrimental effects of prolonged sleep deprivation on a variety of systems with noticeable changes in endocrine, metabolic, and immune function. During the early phase of prolonged sleep deprivation in rats, there is a progressive increase in energy expenditure manifested by weight loss despite increased food intake, decline in thyroid hormones, and increased plasma norepinephrine in response to metabolic demands, and decreased resistance to opportunistic infection as host defense breaks down. Following an increase in body temperature in the first few days of prolonged sleep deprivation, the last few days of survival are marked by hypothermia and a progressively debilitated state. Recent work demonstrates that repeated exposure to sleep restriction has persistent physiologic effects even after substantial time for recovery is allowed.

While experimental studies of prolonged sleep deprivation cannot be conducted in humans, growing evidence over the last few decades suggest that habitually shorter or longer sleep duration is associated with greater mortality (Figure 3). The mechanisms that underlie these associations are not fully understood. Potential adverse physiologic effects of short sleep duration may contribute to negative health outcomes such as cardiovascular disease, diabetes, and obesity, all of which are associated with increased mortality risk. Healthy young adults subjected to partial sleep restriction demonstrated impaired glucose tolerance, higher evening cortisol levels, alterations in sympathetic nervous system activity, reduced leptin levels (a hormone that regulates satiety), and increased levels of ghrelin (a hormone that regulates hunger).
Sleep Deiciency is Associated with Major Health Risks

Cardiovascular

On a population level, 7-8 hours of sleep per night in adults is associated with the lowest risk and incidence of cardiovascular diseases that may ultimately result in death.66-68 Alterations in autonomic nervous system function related to insufficient sleep affect blood pressure59 and have the potential to increase the risk for cardiovascular morbidity and mortality. Associations between self-reported and objectively measured short sleep duration and increased blood pressure and prevalence and incidence of hypertension have been observed in epidemiologic studies (Figure 4).60-62 Epidemiological data linking sleep duration to risk of stroke are limited, but suggest that short (≤6 h) sleep duration may increase the risk for ischemic stroke.63 Short sleep duration is also associated with a greater risk of developing or dying from coronary heart disease and stroke.57 Shift work has been found to be related to elevated risk of cardiovascular morbidity and mortality, including ischemic heart disease, myocardial infarction, and atherosclerosis.64,65 Associations between long sleep duration and cardiovascular outcomes such as hypertension, stroke, and heart disease have been reported.57,66,67
the development of type 2 diabetes. (and possibly long) sleep duration is a risk factor for obesity and
sectional studies, short sleep duration (< 5 h per night) has been found to increase the odds of having obesity 1.5 times, with a 0.35 kg/m² increase in BMI for every 1-hour reduction of sleep. Longitudinal studies of sleep and weight gain have also reported that short sleep duration may increase the risk of becoming obese. Short (≤ 5 h or ≤ 6 h per night) sleep durations have been shown to increase the odds of developing type 2 diabetes and impaired glucose tolerance in several large observational studies. Some studies have found associations between longer sleep durations (≥ 9 h/night) and obesity or increased BMI. Both shorter and longer sleep durations were associated with higher BMIs even after accounting for age and sex, with the lowest mean BMI predicted at 7.7 hours (Figure 5). An increased prevalence of type 2 diabetes and impaired glucose tolerance has been found in long sleepers (Figure 6). Taken together, observational and longitudinal epidemiologic studies suggest that short (and possibly long) sleep duration is a risk factor for obesity and the development of type 2 diabetes.

Cancer
Emerging evidence suggests that sleep duration may increase risks of several types of cancer. Short sleep duration has been associated with a greater risk of developing breast cancer, colorectal cancer, and prostate cancer. Women with longer sleep durations (≥ 9 h/night) have been shown to have a decreased risk of breast cancer. Epidemiological studies have reported a significantly increased risk of developing a number of malignancies, including breast, colon, prostate, and endometrial cancer in night shift workers. Nocturnal melatonin suppression due to decreased sleep duration or light exposure at night (in the case of shift workers) may promote cancer cell development and growth.

Accidents
Sleep deprivation adversely affects neurobehavioral function and leads to excessive daytime fatigue and sleepiness, which increase the risk of human-error related accidents. Sleep deprivation results in impairments in cognitive and motor performance that are comparable to those induced by alcohol consumption at or above the legal limit. Drowsy driving is common, with 32% of respondents in the 2008 National Sleep Foundation Sleep in American Poll reporting having driven drowsy, and 36% admitting to having had briefly nodded off while driving in the past year. Drowsy driving is a contributing factor in a significant proportion of traffic accidents, up to 20%. In addition to an increased risk for motor vehicle crashes, sleep deprivation and related sleepiness are associated with work-related injuries and fatal accidents. These serious repercussions of fatigue and sleepiness caused by sleep deprivation emphasize the indispensable need for sleep and the vital importance of sleep for society as a whole.

CONCLUSION
Sleep deficiency (defined as a state of inadequate or mis-timed sleep) unrelated to a primary sleep disorder, associated with biological, social, environmental and lifestyle factors, is a growing and underappreciated determinant of health status. The consequences to society are enormous, including disease and accident risk, longevity, and elevated direct medical costs and indirect costs related to work absenteeism and property damage. While primary sleep disorders (i.e., sleep apnea, insomnia, narcolepsy, and restless legs syndrome) largely require the attention of the medical community, sleep deficiency represents an opportunity for individuals, institutions, and communities to...
promote good health by addressing the factors which lead to short sleep durations and circadian disruption. Sleep deficiency contributes to the risk for several of modern societies’ medical epidemics, including cardiovascular disease, diabetes, obesity, and cancer. It is a public health imperative to determine the mechanisms underlying these insidious adverse health effects of sleep deficiency, as well as assessing countermeasures directed at improving sleep and overall health in individuals suffering from chronic sleep deficiency. Indeed, increasing sleep duration may be a more palatable and achievable behavior change than other health-promoting behaviors, such as improved nutrition and increased activity levels. The American Academy of Sleep Medicine and the Sleep Research Society urge healthcare personnel, government agencies, educational institutions, employers, community organizations, industry leaders, individuals, and families to prioritize sleep for the betterment of personal and societal health.

Progress toward three major goals is likely to have significant beneficial effects on health:
1. Recognize and meet the biological requirement for sleep on a regular basis
2. Maximize synchrony among the endogenous biological timing systems
3. Recognize the signs and symptoms of primary sleep disorders and seek medical attention

ACKNOWLEDGMENTS
The contributions and editorial assistance of Allison Brager, Ronald Chervin, David Dinges, Elizabeth Klerman, Jennifer Martin, Janet Mullington, Gina Poe, Susan Redline, Steven Shea, Ronald Szymusiak, Fred Turek, and Nathaniel Watson are gratefully acknowledged. This paper was reviewed by the Board of Directors of the Sleep Research Society and the American Academy of Sleep Medicine. Sleep Research Society: Phyllis C. Zee, MD, PhD, Ronald S. Szymusiak, PhD, James K. Walsh, PhD, Janet M. Mullington, PhD, Sean P.A. Drummond, PhD, Elizabeth B. Klerman, MD, PhD, Jennifer L. Martin, PhD, Allan I. Pack, PhD, MBChB, Gina R. Poe, PhD, David B. Rye, MD, PhD, Fred Turek, PhD, and Allison Brager, PhD. American Academy of Sleep Medicine: Nancy Collop, MD, Patrick J. Strollo, Jr., MD, Sam Fleishman, MD, Timothy I. Morgenthaler, MD, Amy Aronsky, DO, M. Safwan Badr, MD, Ronald Chervin, MD, Susan Redline, MD, Ilene Rosen, MD, Steven A. Shea, PhD, Nathaniel F. Watson, MD, Merrill Wise, MD, and Jerome A. Barrett.

REFERENCES